Countdown to an “Uprecedented Warm Decade” – 2 Months to go

“..and it will be exploited by those who fail to understand the reasons for the rise”

Countdown to Unprecedented Warm Decade

Closing
There is little doubt that the decade of the 2000s will have higher land surface, sea surface, and lower troposphere temperature anomalies than the 1990s. There will be those who will wrongly attribute the rise from decade to decade to anthropogenic greenhouse gases, when it is very apparent that the actual cause is the lingering effects of the 1997/98 El Nino event. Attempts will be made to contradict the obvious by those who fail to acknowledge or comprehend the multiyear aftereffects of significant traditional El Nino events. They will present numerous unfounded arguments. Here are a few that have been tried.

Argument 1: The short-term global warming of El Nino events are countered by the short-term global cooling of the La Nina events that follow them.

What The Instrument Temperature Record Shows: That’s true for only parts of the globe and for some El Nino events. It is not true, however, for the SST anomalies of the East Indian and West Pacific Oceans and for the TLT anomalies of the Mid-To-High Latitudes of the Northern Hemisphere. Refer to Figures 4 and 8. The effects of the 1986/87/88 and the 1997/98 El Nino lingered through the La Nina events that followed them in those datasets. This created the appearance of gradual rises in global SST and TLT anomalies.

Argument 2: Global warming caused by anthropogenic greenhouse gases is responsible for the increase in the number of major El Nino events since 1975. (This argument is normally made by someone referring to an ENSO Index that starts in 1950.)

What The Instrument Temperature Record Shows: There are multidecadal variations in the frequency and magnitude of ENSO events. This can be seen by smoothing the NINO3.4 SST anomalies from 1870 to 2009 with a 121-month filter. Refer to Figure 13. During epochs when the frequency and magnitude of El Nino events outweigh the frequency and magnitude of La Nina events, global temperatures rise. And during epochs when the frequency and magnitude of La Nina events outweigh the frequency and magnitude of El Nino events, global temperatures drop.

Argument 3: El Nino events don’t create heat.

What The Instrument Temperature Record Shows: During El Nino events, warm water that had been stored below the surface of the western tropical Pacific (in the Pacific Warm Pool) sloshes to the east and rises to the surface. Tropical Pacific SST anomalies increase in response. In this way, more heat than normal is released from the tropical Pacific to the atmosphere. But El Nino events not only release heat into the atmosphere, they also shift atmospheric circulation patterns (Hadley and Walker Circulation, surface winds, cloud cover). These shifts in the circulation patterns and cloud cover cause surface temperatures and OHC outside of the tropical Pacific to rise.

It is important to note that the vast majority of the warm water that sloshes east during the El Nino had been stored below the surface before the El Nino. While below the surface (to depths of 300 meters) it was not included in the instrument temperature record. But during the El Nino, that warm water has been relocated to the surface and is included in the surface temperature record. So, El Nino events relocate warm water from an area that was not included in the calculation of global temperature to the surface where it is included.

Argument 4: Climate models used by the IPCC reproduce these El Nino-induced step changes.

What The Climate Models Show: Most of the climate models (GCMs) used by the IPCC in AR4 for hindcasting 20th Century climate do not bother to model ENSO. Those that make the effort do not model it well. The frequency, magnitudes, linear trends, and multiyear aftereffects of those models do not match the surface temperature record. The step changes that exist in the instrument temperature record, which are the bases for the much of the rises in global temperatures, do not exist in the model outputs of the 20th century.

If and when GCMs can reproduce the past frequency and magnitude of ENSO events, if and when GCMs can reproduce the multiyear aftereffects of ENSO events, which are these El Nino-induced step changes (including the ones that also appear in the OHC records), then GCMs may have some predictive value. At present they cannot reproduce ENSO or its multiyear aftereffects. At present they have no value.

This failure of GCMs to properly account for the multiyear impacts of major El Nino events (and other natural variables such as the North Atlantic Oscillation) can be seen in a graph of the actual rise in global OHC versus the projected rise forecast by GISS, Figure 14. The GCM used by GISS based its projection on the rise in Ocean Heat Content during the 1990s, assuming the trend would continue at that pace. But during the 1990s, the vast majority of the rise in OHC was caused by the combined effects of ENSO and the North Atlantic Oscillation, and these are natural variables that the GISS GCM did not model. Since 2003, Global Ocean Heat Content has been relatively flat, while the GISS projection reaches to unrealized levels.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: